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The convergence of Legendre Pade approximants to the 
Coulomb and other scattering amplitudes 
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Mathematical Institute, Cornwallis Building, University of Kent, Canterbury, Kent CT2 
7NF, UK 

Received 2 August 1977 

Abstract. The convergence of sequences of Legendre Pad6 approximants to scattering 
amplitudes arising in potential scattering is discussed. It is shown that if the amplitude for 
scattering by the Coulomb potential or the absorptive part of a scattering amplitude whose 
double spectral function obeys a certain bound are suitably modified, convergent 
sequences of Legendre Pad6 approximants may be constructed. Numerical results are 
presented for the Coulomb scattering amplitude. 

1. Introduction 

The partial-wave expansion of a scattering amplitude is most useful at low energies 
when only the lowest waves need be taken into account and the corresponding 
partial-wave amplitudes may be obtained by integrating the Schrodinger equation to 
get the wavefunction in the asymptotic region. As the energy of the scattered particle 
is increased, more waves have to be taken into account and uncertainties arise in the 
numerical evaluation of the corresponding amplitudes. A method for ‘accelerating 
the convergence’ of the partial-wave series is therefore desirable. 

In a recent work (Common and Stacey 1978) we have discussed in detail pro- 
perties and applications of ‘Legendre Pad6 approximants’? which in the applications 
considered did have the above desired property of ‘accelerating convergence’. The 
first example considered was the amplitude for scattering by repulsive inverse-square 
potential. The corresponding partial-wave series converges for physical values of 
z =cos 8 where 8 is the scattering angle, but the convergence is very slow. Of the 
order of hundreds of terms are needed to get four-figure accuracy for the scattering 
amplitude in the physical region while using Legendre Pad6 approximants only the 
first ten partial waves are needed for comparable accuracy. 

An even more extreme example is the amplitude for scattering by the Coulomb 
potential V = e 2 / r  which has the exact form (Landau and Lifshitz 1958) 

where k is the momentum of the particles being scattered (in Coulomb 

t For the remainder of this work we will use the abbreviation LPA for these approximants. 

(1.1) 

units). This 
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has the expansion 

where 

However, this series does not converge for -1 s z s 1, and the right-hand sides of 
(1.1) and (1.2) are equivalent only in the sense of distributions (Taylor 1974). In this 
sense f c ( z )  also has the expansion 

In the following we will present numerical results which show that the LPA to the 
right-hand side of (1.4) converge quickly to fc (z )  except near its cut even though the 
series does not converge point-wise. 

Although it is pleasing to have numerical convergence, it is important to prove 
convergence of the LPA for scattering by as wide a class of potentials as possible. The 
main aim of this work is to make a start on such a programme, by showing that 
sequences of LPA to the Coulomb scattering amplitude (suitably modified) converge in 
the whole complex z-plane cut from z = 1 to 00 which is exactly the region where fc(z) 
is holomorphic. 

The result is extended to the absorptive part of a scattering amplitude whose 
double spectral function p(s, t )  for fixed s is such that if 

$(I +t/2s)=p(s,  t)/.nl 

then 

$ ( x )  = C 1 / X L " + ~  + $2(x) 

for all x on the support of $ ( x ) ,  where 

with clr c2 constants and Lo+ 1 is the number of subtractions in the dispersion relation 
satisfied by the amplitude. This class of amplitudes contains those corresponding to 
scattering by central potentials V ( r )  where V ( r )  is holomorphic in Re r > O  and 
satisfies the bounds (Bessis 1965) 

I V(r)l< cs/lrl", (1 4 
with 77 < 2 for Irl S 1 and 7 >: for l r l 2  1, and c3  is a constant. 

The LPA defined by Common and Stacey (1978) have the important property that 
if sequences of PA to the corresponding power series converge in certain domains, 
then the same sequences of LPA converge in corresponding domains. It is this 
property which we will use to prove convergence for the particular scattering ampli- 
tudes described above. To prove convergence of the PA to the related power series, 
we will show that these series belong to a class of functions considered recently by 
Nuttall (1976). 
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In 8 2, we introduce our LPA and give the convergence theorems mentioned above 
along with Nuttall’s result. Then in Q 3 we will show that the Coulomb scattering 
amplitude given by (1.1) may be suitably modified so that Nuttall’s theorem may be 
applied to the corresponding power series and hence convergence of the LPA proved, 
not only in the physical domain - 1 C z  s 1 but also in the whole domain of 
holomorphy of fc (z ) .  Numerical results will be presented in 0 4 to illustrate rates of 
convergence and comparison will be made with an alternative method for summing 
the Coulomb series (1.2) due to Yennie et a1 (1954). 

In § 5 we show how the absorptive parts of scattering amplitudes satisfying (1.5) 
may be modified, so that again Nuttall’s theorem may be applied to the corresponding 
power series and convergent sequences of LPA obtained. Finally, in § 6 we give our 
conclusions. 

2. Legendre Pade spproximants and Nuttall’s theorem 

In the preceding work (Common and Stacey 1978) we discussed the convergence of 
sequences of LPA to 

when the corresponding power series 

has a rather general domain of holomorphy. In the examples considered in the 
following sections, g(w) is holomorphic in the complex w-plane cut from -03 to - r  
with r 3 1. Then from above work, f ( z )  is holomorphic in the complex z-plane cut 
from t ( r  + r - ’ )  to 03, and has the representation 

(2.3) 

where K ( z ,  w ) =  (1 +2zw + w2)-l/’ and the branch of the square root is chosen so that 
wK(z, w)+ 1 as lw/+co. r is a contour encircling in a positive sense the cut of 
K ( z ,  w) which is the line joining -2 * (z2 - 1)l/*. For z in the complex plane cut from 
; (r+r-’)  to 00, r may be chosen to lie completely inside the holomorphy domain of 
g(w). We now state the definition of the Legendre Pad6 approximants to f ( z )  and the 
corresponding convergence theorem when g(w) and f ( z )  have the above domains of 
holomorphy . 

Definition. The [ n  + j / n ]  ‘Legendre Pad6 approximant’ to f ( z )  is 

where gn+j/n(W) is the [ n  + j / n ]  Pad6 approximant to g(w). 

Theorem 2.1. If gn+j/n(w) converges uniformly to g(w) as n +CO for fixed i =  
0, *l ,  *2,. . . in any closed bounded domain of the complex w-plane cut from -03 to 
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-r, then f f ; ln+j(z)  converges uniformly to f(z) in any closed bounded domain of the 
complex z-plane cut from :(r + r - ' )  to 00. 

An explicit representation for fk+i/n ( z )  is given by the following theorem which 
was proved previously (Common and Stacey 1978). 

Theorem 2.2 Let the partial fraction expansion of gn+iln(w) be 

where the second sum on the right-hand side is absent if j < 0. Then 

(2.5) 

where the branch of the square root is that which is real positive when the argument is 
real positive. 

The partial-wave expansion of the scattering amplitude is usually written as 
Jo 

f(z>= c (2l+llfipl(Z) 
i=o 

where the fi have useful unitarity properties. The [ n  + j / n ]  'Legendre Pad6 approxi- 
mants' in this case are defined by the relations 

where gniiln(w) is the [ n  + j / n ]  PA to g(w) defined in (2.2) and ap, up, P, are again the 
coefficients in the partial fraction expansion of gn+iln(w). 

We finish this section by giving an important new convergence theorem for the 
paradiagonal sequence of PA gn-l/n(w) with n = 0, 1 ,2 ,  . . . , when g(w) has the 
representation 

If 4 ( u )  is real non-negative and a, b real then g(w) is a series of Stieltjes and it is well 
known that such sequences of PA converge to g(w) in its domain of holomorphy. 
Nuttall (1976) has recently extended this result to the case when a, b are complex and 
4 ( u )  is a complex weight function by proving the following theorem. 

Theorem2.3. Let g(w) have the representation (2.5) with a, b and 4 ( u )  possibly 
complex and such that 

h(8)=4(i[(b-a)cos ~ + a + b ] ) l s i n  81 (2.10) 

satisfies the following conditions for -7r < 8 s T: 
(i) 3 real A,  B independent of 8 such that A > Ih(8)i > B  > 0. 
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(ii) 3 L, A > O  independent of 8 such that 

Then the [n  - l / n ]  Pad6 approximant to g(w) converges uniformly to g(w) as n +CO 

in any closed, bounded region of the w-plane cut along the arc w = + l / u  with 

The domain of convergence is therefore the holomorphy domain of g(w). We will 
show in the following sections how the scattering amplitudes we wish to consider may 
be manipulated so that the corresponding power series has the representation (2.9) 
with 4(v) satisfying the conditions of theorem 2.3. Using this theorem, we will then 
prove convergence of the corresponding sequence of LPA. 

v = i[(b - a) t  + a +b],  -1 -=fSl .  - 

3. The Coulomb scattering amplitude 

In this section we will obtain sequences of approximants from the partial-wave 
expansion (1.4) of fc(z) and show that they converge to f&) in the complex z-plane 
cut from 1 to CO. These approximants are a further modification of the LPA defined in 
(2.6) and (2.8). However, the techniques involved show how one should proceed in 
the case of the more general class of potentials considered in 0 5 ,  when an approxi- 
mant similar to (2.8) will be used. 

The power series corresponding to the Legendre series (1.4) is 

(21+1) T ( l + l + i / k )  (2wD+l ) (wD+l - i /k )  
g ( w ) = Z o 2 i k  r ( / + l - i / k )  (-w) = 2ikT(1-2i/k) G(w) 

where D = d/dw and 

00 

G(w)=  1 B ( I + l + i / k ,  1-2i/k)(-w)'= 
l=O 

with q5(v)= ~ " ~ ( 1 -  v ) - ~ " ~ ,  using the standard integral representation of the beta 
function (Abramowitz and Stegun 1968). 

As it stands, the weight function 4 ( a )  does not satisfy condition (i) of theorem 
(2.3). To rectify this we write 

dv 1 1 

(3.3) G ( w ) =  4 1 ( v ) d c - g /  =N(w)-CS(w) l + v w  2 0 (v-v)1'2(1+uw) 

where C is a complex constant to be chosen, and 

&(U)= +(V)+iC(V - f J 2 ) 1 / 2 .  (3.4) 

Explicitly S(w) is 
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where a( = (7r/2)(21- 1)!!/(/!2’), and the corresponding Legendre series is 

f (21+ l > a A ( z )  
l = O  

du 

where E is an elliptic integral of the second kind. This could have been evaluated 
directly, but in the following we use our LPA to evaluate it. 

The following lemma will allow us to apply Nuttall’s theorem to G(w). 

Lemma 3.1. If IC( > 1, then h(8)=  COS 8 + l)]lsin 81 satisfies conditions (i) and 
(ii) of theorem 2.3. 

Proof. From (3.4), and the expression for 4 ( u ) ,  

h ( e )  = /sin e)(cos $8)”lk(sin 4e)-4ilk + C. (3.5) 

Now, the first term on the right-hand side of (3.5) has modulus lsin 81. Therefore for 
-7r s e s 7, 

o<IcI- i+(e)IG 1 +IcI (3.6) 
when IC1 > 1, so that h ( 8 )  satisfies condition (i) of theorem 2.3. It is straightforward to 
show that for -7r d 8 s 7r - 6, there exists M independent of 8 such that 

lh (e + 6)- h(e)l< MS. (3.7) 
This follows from the existence and boundedness of the derivative of h ( e )  for -7 s 
8 6 7 except at 8 = -T, 0, 7 and the existence at these exceptional points of right- 
hand and left-hand derivatives of h ( 8 )  which are different but finite. That condition 
(ii) is satisfied is an immediate consequence of (3.6) and (3.7). 

Let the [n - l / n ]  Pad6 approximants to the functions N ( w )  and S ( w )  defined by 
(3.3) have the partial fraction expansions 

We can define from (3.3) the corresponding approximant 

to G ( w )  and from (3.1) the approximant 

(3.9) 

(3.10) 

(3.11) 
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Theorem 3.1. The approximants 

~ , [ - Z - ( Z ~ - ~ ) ~ / * C O S I , ~ ]  dI,b 
2x i  x 

converge uniformly to 

281 

(3.12) 

as n + 00 in any closed bounded domain of the complex z-plane cut from 1 to 00, and 
this limit is the Coulomb scattering amplitude fc(z) defined in (1.1). 

Proof. From the lemma, N(w) and S(w) have weight functions satisfying the condi- 
tions of Nuttall's theorem. (S(w) is also a series of Stieltjes.) Therefore, Nn(w) and 
S,(w) converge uniformly to N(w)  and S(w) respectively and hence G,(w) converges 
to G(w). It immediately follows that g,(w) given by (3.11) converges uniformly to 
g(w) in any closed bounded domain of the w-plane cut from 1 to 00. Proceeding as in 
theorem 3.2 of the work of Common and Stacey (1978), it follows finally that fk(z) 
defined by (3.12) converges as in the statement of the theorem. 

To prove that this limit equals fc (z ) ,  we note that, from (3.1) and (3.2) 

4 3+2i /k  i lk  1 

Ui/k(l -u)-2i/k 2+-). (3.13) 
1 

g(w)= 2 ik r ( l -  2i/ k )  du((l + u w y -  (1 + uw) 1 + uw 

Using the relation (Gradshteyn and Ryzhik 1965) 

Pm-l[(I - uz)/(I - 2 ~ 2  + u ~ ) ~ / ~ / ]  
(1 - 2uz + U2)m/2 9 (3.14) - - '1 J f f  d* 

x 0 (1-u[z +(z2- 1)lI2 cos I,b]}m 

the limiting integral is 

Tr =L I g[-z - ( z 2 -  1)l" cos $1 d$ 
T o  

1(3 - 2i/k)(l-  U')- 2 + 
(1-22vz+u2)3/2 (3.15) 

for all z in the plane cut from 1 to W. To complete the proof we have to show that the 
right-hand side of (3.15) is 

This is accomplished by showing that the nth derivatives of each expression at z = 1 
are equal to 
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In the latter case, the result follows from straightforward differentiation, and in the 
former from differentiation under the integral sign and application of standard formu- 
las (Abramowitz and Stegun 1968) involving the hypergeometric functions so 
obtained. 

An explicit expression may be obtained for the approximant fk ( z ) .  It is given by 
the following theorem. 

Theorem 3.2. Let {a,, U,: p = 1, . . . ,2n}  be the coefficients of the partial fraction 
expansions of Nn(w) and S , ( w )  given in (3.8) and (3.9). Then 

i(3 - 2i/k)(l -a',)- 2 
(1 - 2a,z +a,) 2 3 / 2  ). (3.16) 

1 f k ( 4  = 

Proof. Substituting from (3.10) for G,(w) in (3.11) we find that 

1 2n 4 

Using this expression for g,(w) in (3.12), the representation (3.16) follows. 

(3.17) 

4. Numerical results for the Coulomb amplitude 

In table 1 we illustrate the numerical convergence of the approximants ff;(z) given in 
(3.16) when k = 1, at a selection of points on the real axis. It will be seen that for 
physical scattering angles the convergence is very quick except near the forward 
direction where the amplitude is singular. Even far out on the negative real axis 
convergence is still reasonable and this is true in the whole complex z-plane except 
near the cut of fc(z) from z = 1 to Co. 

Table 1. Values of the approximants f$,, to f&) at momentum k = 1. 

~ ~~ 

0.951 32.1 20.2 20.44 20.42 
-10.0 i -0.4 i -0.72 i -0.71 i 

0.0 -0.95 -0.995 965 i -0.995 965 1 -0.995 964 7 
0.15 i -0.089 83 i -0,089 74.5 8 i -0.089 745 6 i 

-1.0 -0.43 -0.411 67 -0.411 739 40 -0,411 739 39 
+0,31 +0.283 68 i +0.283 673 59 i +0.283 673 53 i 

-6,213 0.02 0.065 0.046 0.043 
0.15 i 0.135 i 0.131 i 0,132 i 

In table 2 we compare various methods for summing the Coulomb series. Each 
approximant is constructed from the set of phase shifts { S I ;  1 = 0,1,  . . . ,9} with SI  
given by (1.3). The approximant f k ( r )  is given in the second column, while the third 
column contains values of the LPA fk,5(z) to the series (1.14). 

We compare these results with those obtained from an alternative method for 
summing the Coulomb series due to Yennie et a1 (1954). Their method involves 
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Table 2. Comparison of the values of approximants to f&) constructed from the first ten 
partial waves (k = 1). 

~ ~~ ~ 

z f:b) fk,5(z) f E " ( Z )  f c k )  

0.951 20.21 22.3 27.8 20.42 
-1.11 i -5.4 i +4.0 i -0.71 i 

0.0 -0.995 966 -0.995 99 -0.996 4 -0.995 965 
-0.089 759 i -0.089 76 i -0.089 74 i -0.089 746 i 

-1.0 -0.41 1 736 -0.411 738 -0,411 4 -0.411 739 
+0.283 677 i +0.283 671 i +0.283 5 i +0.283 674 i 

-6,213 +0.055 0.034 12.5 0.043 
+0.133 i +0.136i -6.4 i 10.132 i 

replacing the series (1.2) by the mth 'reduced' series, defined by 

(1 -2 )mfc(z )=  f UI"'Pl(2). (4.1) 
i=o  

The resulting function has a 'softer' singularity at z = 1, and except close to this 
singularity the series on the right-hand side of (4.1) converges quite quickly for 
physical values of z when m 5 3. Each coefficient U{"' may be obtained from a finite 
number of partial waves of the original series (1.2), e.g. given the set {ai; 1 = 
0,1 ,  . . . ,9 } ,  the set of coefficients {aj3';  1 = 0,  . . . ,6} may be evaluated. From these 
coefficients we can calculate the sum of the first seven terms of the third 'reduced' 
series which we denote by 

(4.2) 

and we give its values in the fourth column of table 2. Finally, in the fifth column we 
give the exact values of fc(z). 

These results presented in table 2 may be summarised as follows. The three types 
of approximants all converge quickly for physical values of z except near the 
singularity at z = 1. Near z = 1, the approximants f:(z) are better than the other two 
types of approximants when k = 1, although for other values of k this is not always the 
case. 

Away from the physical region -1 S z s 1, the approximants of Yennie et al fail to 
converge, whereas the approximants f k  ( z )  and fk-l ,n (2) converge quite quickly 
except near the cut of f c ( z )  running from z = 1 to 00. 

5. Absorptive part of general scattering amplitude 

In this section we shall define a sequence of LPA to the absorptive part of an 
amplitude, and make use of the Froissart-Gribov representatation of its partial waves 
to prove convergence when the double spectral function satisfies a certain bound. 

The fixed s dispersion relation for the absorptive part is 
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where Lo+ 1 is the number of subtractions. In forming approximants to Im f(s, t )  we 
shall ignore the polynomial part of (5.1). Writing Im f(s, t )  as a partial-wave series 

the partial-wave amplitudes {fi : 1 3 Lo + 1) have the Froissart-Gribnov representation 
00 

fi = J ~ l ~ u > $ ~ u ) d x  ( Z > L O +  1) (5.3) 
xo 

where 

As usual, we consider the power series corresponding to the Legendre series (5.2), 
i.e. 

where 

This series converges for I wI < r = x o +  ( x i -  1)”’ and x not in [-1, 13. In order to 
apply Nuttall’s theorem to g ( w )  we need the following two lemmas. 

Lemma 5.1. The function g ( w )  defined in (5.4) has the representation 

where r = xo + ( x i  - 1)”’ is the radius of convergence of (5.4) and 

Proof. L ( w ,  x )  defined in (5.6) has the representation (Kinoshita et a1 1964) 

du m 

Therefore 

= J w  du 
*+(x2-1)’/2 uLo+l(u + w)(l-2ux + U y ’  (5.9) 
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Suppose w has a fixed value in the complex plane cut from -r  to CO. We may 
substitute from (5.9) into (5.5) and interchange the order of integration over U and x 
(which is then allowable since the behaviour at infinity of +(x) is such that the integrals 
on the right-hand side of (5.3) exist) and find 

Lemma 5.2. Let 

(5.10) ic 2 2 -1/2 d d ~ ) = 4 ( u ) + - - ( w - r  U ) 2 

where c is a real non-zero constant and d ( u )  is defined in (5.8). Then if for all x 3 XO, 

(5.11) 4 ( x  = c 141 ( x  1 + c24z(x ) 

where 
L0+l/2 *l(X) = x 

(5.12) 

then h ( 8 ) =  Isin e \43 - i r ( l  +cos e ) ]  satisfies conditions (i) and (ii) of Nuttall’s 
theorem. 

Proof. From (2.10) and (5.8) the contribution from i,h1 to h ( 8 )  is 

dx 4 ( u + l / u )  xL0+1/2 
2 2 1/2 Lo+l io (1-2ux+u2)1/2’ hl(8)=2(w-r  U ) U 

where U = (1 +cos 8)2r. Making the substitution y = [ 1 - 2x/(u +U-’)]’’*, 

where yo = [ 1 - 2x0/(u + l / ~ ) ] ” ~ ,  it follows immediately that 

o s h l ( e ) s M 1  - T ~ e c T  

Ihz(8)I c M 2  - T ~ e s T  
and similarly if h2(0) is the contribution to h ( 8 )  from 4 2 ( x ) ,  then 

where Mi are constants. 
Using these bounds with (5.10), 

lh(e)l= Jsin 81 143[(1+cos 8) /2r](sM1+M2+IcI .  (5.14) 
Also, since 4 ( u )  is real, 

Ih(e)l=+l>o. 

Therefore h ( 8 )  satisfies condition (i) of Nuttall’s theorem. To show that the continuity 
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condition is also satisfied, first suppose that 8 # -T, i.e. v # 0. Then from (5.8) for 
small 88 > 0, 

lh(e-se)-h(e)1 = 2 [ ( 1 - r u ) v r ] " 2 u L ~ + " ( ~ l + ~ 2 ) + ~ ( ~ ~ )  (5.15) 

where Su is the corresponding increment in U and 

* ( x )  dx f (U + 1 / U ) + f  6u(lJ2- 1 ) 

[1-2ux +u2+2Su(v  - X ) y 2  
(5 .16)  I1 = 

1 1 f ( U + l / U )  

I2 = io i[ 1 - 2vx + u 2  + 2sv ( U  - x ) ] 1 / 2  - (1 - 2vx + U 
From the boundness of I ~ ( x ) [ ,  it follows that for U # 0, 

I1 = O(Sv 

1 (e  - se) - (e) ]  G Isel x constant 

l h l ( s e ) - h l ( - T ) J e h  xconstant= (se)2xconstant. 

I2 = O(6v). 

Hence for U # 0, i.e. 0 # -T 

Suppose now 8 = -T, i.e. U = 0. Then Sv = (88)2/4r and from (5.13) 

Finally, 

(5.17) 

(5.18) 

(5 .19 )  

Using the bound (5.12) on & ( x )  it follows that h 2 ( - 7 ~ ) =  0 and 

where, as previously, we have made the substitution y = [ 1 - 2 x / ( v  + l / ~ ) ] " ~  in (5.19).  
Therefore 

The first integrand is O [ ( ~ V ) ' / ~ ]  and the second O[(ln &I)-"]. Therefore 

l h 2 ( s e ) - h 2 ( - ~ ) I ~  O[(ln ~ v ) - ~ ]  =O[(ln se)-"]. (5.21) 

Combining (5.21) and (5.18), 

lh(se)-h(e)l sc l l ln  se/-" (5.22) 

when 8 = -T. From (5.17) and (5.22) it follows that h ( 8 )  defined in (5.10) satisfies 
condition (ii) of Nuttall's theorem when a > 1 so the lemma is proved. 

We are now ready to prove the main result of this section which is the following 
theorem. 

Theorem 5.1. Let 
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where the partial-wave amplitudes { f i ;  fa Lo+ 1) have the Froissart-Gribov 
representation 

m 

f i  = 5 Ql(x)rL(x) dx ( I  LLo+ 1 )  
*o 

(5.3) 

where $ ( x )  satisfies the conditions (5.11), (5.12). 
If 

is the approximant to 

dv 
= N ( w ) - C S ( w )  (5.4) 

formed by taking the [n - l / n ]  Pad6 approximants to N ( w )  and S ( w ) ,  then the 
sequence of approximants 

(5.23) 

where ab = apaiL0-l and z = 1 + [2t / (s  -4p2) ] ,  converge uniformly to f(z)= Im f(s, 1 )  
as n + 00 (for fixed s > 4p2), for all t in any closed bounded domain of the complex 
t-plane cut from 4pz to 00. 

Proof. The power series corresponding to the Legendre series (5 .2)  is 

(5.24) 

and with the usual notation 

K ( z ,  w ) ( 2 w G ' ( w ) + G ( w ) ) d w .  (5.25) 

The approximants to G ( w )  are 
L O  2n a' L O  2n 

G,(w)= 1 f~(-w) '+(-w)Lo' lgn(w)= 1 ----"+ 1 ( f l -  1 a b b ) ( - w ) '  (5.26) 
l=O p = l  l+upw 1=0 p = l  

-Lo-1 where ab = "pap  , 

From the assumed properties of $ ( x )  and hence of c$~(v), Nuttall's theorem may 
be used to prove that g n ( w ) + g ( w )  as n +CO uniformly for w in any closed bounded 
domain of the w-plane cut from -r to --CO. Similarly G n ( w ) + G ( w )  and GL(w)+ 
G ' ( w ) .  Therefore from (5.26) 

fk(z)=LK(z,  w ) ( 2 w G L ( w ) + G n ( w ) ) d w  

(5.27) 

and fk(z) converges to f(z). 
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We nave shown that the conditions (5.11), (5.12) on 

are sufficient for the sequence of approximants ff;{l+ [2t/(s -4p2)]} to converge to 
Imf(s, i) for fixed s in the whole complex t-plane cut from 4 p 2  to CO. As mentioned in 
the introduction, these conditions are satisfied in the case of scattering by a potential 
V ( r )  which is holomorphic in Re r > 0 and satisfies the bounds 

with 77 < 2 for Irl G 1 and 77 >$ for Irla 1, and c3 is a constant. 

(Bessis 1965), 
This follows from the fact that for this class of potentials it may be proved that 

Ip(s, t’)l s~[ (s t ’ ) - ’ ’~+  (2+tf)L~s-1’2j (5.28) 

for fixed s > 4 p 2  and all t’ > 4p2.  So that for fixed s > 4p2,  

\+(x)[ S B ~ X - ’ / ~ + B ~ X ~ O  (5.29) 

when x = [2r‘/(s -4p2)] + 1, and where Bi are constants. 
Therefore, for Lo = 0, 1, . . . , *(x) satisfies the conditions (5.12). 
To widen the class of potentials from that given by (1.6) to the case when 7 < z ,  

one could proceed in the manner suggested by Bessis (1965). For these values of 77 
one expects to find a finite number of distributions in p(s, t ) .  These distributions 
correspond to the lowest-order terms in the Born approximation and hopefully can be 
removed from p(s, t )  to leave a part which is bounded in the manner above. 

6. Conclusions 

We have shown that our ‘Legendre Pad6 approximants’ may be used to construct 
sequences of approximants from the partial-wave expansion (1.4) to the Coulomb 
scattering amplitude fc(z), and we have proved that such sequences converge to fc(z) 
in its whole domain of holomorphy. 

Numerical examples show that sequences of LPA constructed from the partial- 
wave series of other scattering amplitudes corresponding to, for instance, the inverse- 
square and Xukawa potentials, do seem to converge to the exact amplitude in similar 
domains. However, it is important to construct sequences of approximants which can 
be proved to converge. As a start we have done this in § 5 for the absorptive part of 
scattering amplitudes corresponding to a certain class of potentials. An important 
objective in the future will be to extend these results to the real part of the amplitude 
and for a wider class of potentials. 

The procedure of Yennie et a1 (1954) which essentially weakens the singularity of 
fc(z) at z = 1, has also been used in the case of scattering by Yukawa and exponential 
potentials, the idea in the cases being to remove the nearest singularities, and thus 
accelerate the convergence of the ‘reduced’ partial-wave series. However, the 
‘reduced’ series will still not converge in the whole domain of holomorphy of the 
amplitude. The procedure also requires precise knowledge of the nature of the nearby 
singularities. 
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In comparison our approximants converge in the holomorphy domain of the 
amplitude and do not use such details of the amplitudes singularities. 
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